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Effective boundary conditions

S U N oV
1275y " ax’
2 itf 6522 3
U =€A, Sy + €° Kyy T + 0(€?) oV
r=0 r=0 = S;=—ReP +2—,
- \ v =Y 22~ oY’
Navier-slip condition Second-order correction G ow dVv
= + :
2T 9Y  0Z
itf 0512 itf 053 IAYY:
1% = —e2 gt 12 €* + €2 K + 0(€3)
_ y zy yy
Y=0 X [, _, oz |,_, MWy
\ ]| J
Y Y
Second-order, Second-order,
effect of interface permeabilities effect of medium permeability
w =€, S + e2 3¢t + 0(€3  Nerianalf iof
veo z932|,_ zy "57 . (€”) A - Navier-slip coefficients
\ J -
| \ Y } fK;}{ 2+ Interface permeability coefficents

Navier-slip condition .
P Second-order correction

¥,y medium permeability






Longitudinal cylinders (LC) Longitudinal modified cylinders (LM)
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Mean velocity profiles (in global coordinates)
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Mean velocity profiles (in wall coordinates) Uy
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Root-mean-squares of velocity fluctuations

21.6
= 1.2/

Smooth

- 60

0

100












A, criterion = 500




Production rate of TKE (normalized)
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*Behaviors of the production rate of TKE and the Reynolds
shear stress near permeable walls clearly interpret the
adverse/favorable effects on skin-friction drag
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T C,q: Fully feature-resolving simulation
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Conclusions

Properly engineered permeable substrates can reduce drag in wall-bounded turbulent
flows by attenuating the near-wall coherent structures.

In the homogenization approach followed, the flow is not resolved in the porous layer,
but an effective velocity boundary condition is developed, and enforced, at a virtual
interface between the porous bed and the channel flow.

The implementation of the homogenization approach significantly reduces the
numerical cost of direct numerical simulations over porous layers.

The results, examined in terms of mean values and turbulence statistics, demonstrate
the drag-reducing effects of porous substrates with streamwise-preferential alignment
of the solid grains.



